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LElTER TO THE EDITOR 

Removing cut-off s from one-dimensional Schrodinger 
operators 

M Klaus? 
Department of Mathematics, Universi$y of Virginia, Charlottesville, VA 22903, USA 

Received 13 June 1980 

Abstract. This Letter deals with the following type of question. Suppose Vo(x )  is so 
singular near 0 that the quadratic form of -d2/dx2+ V o ( x )  is unbounded from below, but 
that (-d2/dx2)D + Vo(x) is bounded below where D refers to Dirichlet boundary conditions 
(BCS) at 0. Let H(a )=-d2 /dx2+  V,(x) where V,(x)+ V , ( x )  pointwise (AE) as ado.  
Under some additional assumptions on V,, we prove that H(a)-+H,(O) in the norm 
resolvent sense. Typical for applications is the case where V, are cut-off potentials or 
regularised potentials of some sort. 

This Letter was inspired by a recent work of Gesztesy (1980, to be referred to as I) 
where it was shown that on L2(R)  the operator 

H ( u )  = -d2/dX2-C/(IX/ +a) ,  c > O , a > O ,  (1) 

in the strong resolvent sense, as a & O .  The subscript D in (2) and throughout this Letter 
means that we have a Dirichlet BC at 0. Following I, the behaviour of the bound states in 
the limit of small a is as follows: the ground state Eo(a) of (1) tends to --OO whereas the 
higher energies approach the eigenvalues of HD(O) monotonically from above. If 
El (a )  <&(a) < . . . denote the excited states of H ( a ) ,  then E l ( a ) ,  which has odd parity 
and is also the ground state of HD(a) ,  tends to --c2/4. Rut also E2(a) has to converge to 
-c2/4, for HD(0) has doubly degenerate eigenvalues and the non-crossing rule prevents 
Ez(a)  from ever getting smaller than -c2/4. Thus removing the cut-off from (1) means 
putting Dirichlet BCS at 0. 

It is the object of this Letter to prove that some of the essential features of the results 
in I carry over to a wide class of potentials and various types of cut-offs. We shall 
strengthen the results of I by proving norm resolvent convergence instead of strong 
resolvent convergence (theorem 1). We study the Hamiltonian 

(3) 

in the limit a J 0  where a denotes a parameter taking on values in some interval 
O ~ a a u o .  

H ( u )  = -d2/dX2 + Va(x) 
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We require: 

pointwise AE as a .lo; 
b 

(iv) Va(x) dx + --oo as a .lo, for some b > O ;  (7) 

Our main theorem states the following. 

Theorem 1. Let H ( a )  be as in (3) and let V,(x) obey conditions (i)-(v). Then 
H ( a )  +HD(0) in the norm resolvent sense. 

Before proving theorem 1 we need some preparations. We define the Birman- 
Schwinger kernel for H ( a )  by 

where Vi" stands for 1 Va11/2sgn V, and ( 2 ~ 2 - l  exp(-cYlx - y 1) is the kernel of the 
inverse of -d2/dx2+cY2. The corresponding kernel for Dirichlet BCS is 

Then 

where is rank one with kernel 

As a.10, 

K,,,;D + K,,o;D (13) 

I va(x)11/2j w ( ~ ) / - - " ~ +  1 vo(x)/l /zj  w(~j l - ' /~  

in norm, since if W ( x )  denotes the RHS of (4) we have that 

strongly. So convergence in norm follows from the compactness of the kernel (10) with 
V, replaced by W. Also llKu,,;D 1 1  + 0 as CY + 00 uniformly in a. We also note that for any 
rank-one operator A = J ($ ,  ) 
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With these tools the proof of theorem 1 is now merely a somewhat tedious 
application of the resolvent expansion for ( H ( a )  -E)-'. 

Proof of theorem 1. Write R (resp. Ro) for (H(a)+a2)- '  (resp. (-d2/dxz+az)-'), KD 
for K,,,;D, L for La,, and put P =  4(4, e )  where 4 =exp( -a I~ l ) / (2a ) ' /~  and RD= 
Ro- P. Pick a such that llKDll< 1 and T.JIKDII(~ - ~ ~ K D ~ ~ ) - '  < 1 for a E [0, aol. Then 

R = R D +  P-(R,, + P)v:/' (1 +K,  +L)-'] V , ~ ' / ~ ( R ~  + P). (15) 

Now, using (14) 

(1 + KD + L)-' = [ 1 + (1 + KD)-'L]-'( 1 + KD)-l 

cz  )P=-P. 1 
( l + c  l + c  

1-c+- 

As a J O ,  this term converges to zero in norm, since it follows from (5)-(8) and expanding 
(1 + KD)-' that 

c (4, va'$)[1 -TllKDll(1 - ~ ~ ~ D ~ ~ ) - ' l  
where (4, V&) + --CO on account of (7). 

Next we collect terms of the form P. . . RD. They add up to 

(19) -- (4, v i / ~ ( ~  +KD)-~IV,I~/ZRD e ) .  

l + c  

The norm of this operator is bounded by 

since 11 I V, l'/zRDll is uniformly bounded in a. By (7) and (8), this term goes to zero also. 
The R D  . .  . P terms can be handled in the same way. 
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On writing (1 + KD)-’ = 1 - (1 + K D ) - ’ K D ,  a simple estimate shows that the 
R D .  , . R D  term which involves 4 is bounded by 

3 where p = 2 -  6, 0 <: 6 < 2 - y. By assumption (4) the second factor on the RHS of (22) 
stays bounded as a 4 0. Thus the first term in (21) tends to zero. 

Similarly, choosing S <: 2 - y and S < 1, we have 

s (Iva11/24, l ~ l l ~ a 1 1 ~ z 4 ~ s ~ 4 ,  lVal4)l-’ (24) 
by Jensen’s inequality with respect to the operator 1x1’ and its spectral measure, As 
a 40, the first factor in (24) stays bounded, while the second diverges less rapidly than 
(4, Va4) on account of (7) and (8). So (21) tends to zero. Finally, using (13), we 
conclude that the remaining term 

R ~ - R ~ V ; / ‘  (1 +KD)-~IV,~~I’RD (25) 
converges in norm to the inverse of (-d2/dx2)D + Vo + a2. This proves theorem 1. 

Remarks 

(1) Assumptions (i)-(v) include some cases of physical interest, for example (1) or 
cut-offs of the form Va(x) = min[- Vo(x), l / a ] ,  V o s  0. Moreover, the following situa- 
tion is incorporated as well. Suppose Vo(x) = 0 and Va(x) = - l /a l”(Va(x)  = 0) when 

(2) As in the Coulomb case (l), only the ground state of H ( a )  tends to -cc as a JO. 
That the ground state does, follows from (iv), noting that (cp,  H(a)cp) + -cc (a  $ 0 )  if 
cp E C: ( R ) ,  cp = 1 on [-b, b ] .  That the ground state is the only divergent eigenvalue can 
be seen as follows. Suppose Eo(a) ,  E l (a)  would both tend to --cc as a 40. Choose a 
normalised linear combination of the corresponding eigenfunctions which satisfies 
9(0) = 0.  Then 9 ED(HD(~))  and (9, H D ( ~ ) J I )  = (9, H ( a ) 9 )  E [Eo(a), El(a) l ,  
contradicting the fact that &(a)  is bounded from below uniformly in a (on account of 
(i)). Alternatively, one can also argue by means of the Birman-Schwinger principle, 
which says that -a2 is an eigenvalue of H ( a )  if and only if -Ka,a has eigenvalue 1. If a 
is large lIK,,a;D 1 1  is small, so that is responsible for the ground state diverging. In 
leading order, L a  has eigenvalue -1 if 

1x1 < a /2  (1x1 > a/2), 0 < S < 1. 

which gives an implicit equation for ..(a). For problem (1) one easily verifies that 
a’= - c 2  (In a)2, which is in agreement with I. 
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