Removing cut-offs from one-dimensional Schrodinger operators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L295
(http://iopscience.iop.org/0305-4470/13/9/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Removing cut-offs from one-dimensional Schrödinger operators

M Klaus \dagger
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Received 13 June 1980

Abstract

This Letter deals with the following type of question. Suppose $V_{0}(x)$ is so singular near 0 that the quadratic form of $-\mathrm{d}^{2} / \mathrm{d} x^{2}+V_{0}(x)$ is unbounded from below, but that $\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}\right)_{\mathrm{D}}+V_{0}(x)$ is bounded below where D refers to Dirichlet boundary conditions (BCS) at 0 . Let $H(a)=-\mathrm{d}^{2} / \mathrm{d} x^{2}+V_{a}(x)$ where $V_{a}(x) \rightarrow V_{0}(x)$ pointwise (AE) as $a \downarrow 0$. Under some additional assumptions on V_{a}, we prove that $H(a) \rightarrow H_{\mathrm{D}}(0)$ in the norm resolvent sense. Typical for applications is the case where V_{a} are cut-off potentials or regularised potentials of some sort.

This Letter was inspired by a recent work of Gesztesy (1980, to be referred to as I) where it was shown that on $L^{2}(\mathbb{R})$ the operator

$$
\begin{equation*}
H(a)=-\mathrm{d}^{2} / \mathrm{d} x^{2}-c /(|x|+a), \quad c>0, a>0, \tag{1}
\end{equation*}
$$

tends to

$$
\begin{equation*}
H_{\mathrm{D}}(0)=\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}\right)_{\mathrm{D}}-c /|x| \tag{2}
\end{equation*}
$$

in the strong resolvent sense, as $a \downarrow 0$. The subscript D in (2) and throughout this Letter means that we have a Dirichlet $B C$ at 0 . Following I, the behaviour of the bound states in the limit of small a is as follows: the ground state $E_{0}(a)$ of (1) tends to $-\infty$ whereas the higher energies approach the eigenvalues of $H_{D}(0)$ monotonically from above. If $E_{1}(a)<E_{2}(a)<\ldots$ denote the excited states of $H(a)$, then $E_{1}(a)$, which has odd parity and is also the ground state of $H_{\mathrm{D}}(a)$, tends to $-c^{2} / 4$. But also $E_{2}(a)$ has to converge to $-c^{2} / 4$, for $H_{D}(0)$ has doubly degenerate eigenvalues and the non-crossing rule prevents $E_{2}(a)$ from ever getting smaller than $-c^{2} / 4$. Thus removing the cut-off from (1) means putting Dirichlet bCS at 0 .

It is the object of this Letter to prove that some of the essential features of the results in I carry over to a wide class of potentials and various types of cut-offs. We shall strengthen the results of I by proving norm resolvent convergence instead of strong resolvent convergence (theorem 1). We study the Hamiltonian

$$
\begin{equation*}
H(a)=-\mathrm{d}^{2} / \mathrm{d} x^{2}+V_{a}(x) \tag{3}
\end{equation*}
$$

in the limit $a \downarrow 0$ where a denotes a parameter taking on values in some interval $0 \leqslant a \leqslant a_{0}$.
\dagger Present address: Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland.

We require:

$$
\begin{equation*}
\left|V_{a}(x)\right| \leqslant c\left(1+|x|^{\gamma-\epsilon}\right) /|x|^{\gamma}, \quad a \in\left[0, a_{0}\right] \tag{i}
\end{equation*}
$$

where $\epsilon>0,0<\gamma<2$ and c is a constant;
(ii) $\quad V_{a}(x) \in L_{1}^{\text {loc }}, \quad a \in\left(0, a_{0}\right]$,
(iii) $\quad V_{a}(x) \rightarrow V_{0}(x)$
pointwise AE as $a \downarrow 0$;

$$
\begin{equation*}
\int_{-b}^{b} V_{a}(x) \mathrm{d} x \rightarrow-\infty \quad \text { as } a \downarrow 0, \text { for some } b>0 \tag{iv}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\sup _{a \in\left(0, a_{0}\right)} \frac{\int_{-b}^{b}\left|V_{a}\right| \mathrm{d} x}{\left|\int_{-b}^{b} V_{a}(x) \mathrm{d} x\right|} \equiv \tau<\infty . \tag{7}
\end{equation*}
$$

Our main theorem states the following.
Theorem 1. Let $H(a)$ be as in (3) and let $V_{a}(x)$ obey conditions (i)-(v). Then $H(a) \rightarrow H_{\mathrm{D}}(0)$ in the norm resolvent sense.

Before proving theorem 1 we need some preparations. We define the BirmanSchwinger kernel for $H(a)$ by

$$
\begin{equation*}
K_{\alpha, a}(x, y)=\left|V_{a}(x)\right|^{1 / 2} \frac{\mathrm{e}^{-\alpha|x-y|}}{2 \alpha}\left(V_{a}(y)\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where $V_{a}^{1 / 2}$ stands for $\left|V_{a}\right|^{1 / 2} \operatorname{sgn} V_{a}$ and $(2 \alpha)^{-1} \exp (-\alpha|x-y|)$ is the kernel of the inverse of $-\mathrm{d}^{2} / \mathrm{d} x^{2}+\alpha^{2}$. The corresponding kernel for Dirichlet BCS is

$$
\begin{equation*}
K_{\alpha, a ; \mathrm{D}}(x, y)=\left|V_{a}(x)\right|^{1 / 2} \frac{\mathrm{e}^{-\alpha|x-y|}-\mathrm{e}^{-\alpha|x|} \mathrm{e}^{-\alpha|y|}}{2 \alpha}\left(V_{a}(y)\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
K_{\alpha, a}=K_{\alpha, a ; \mathrm{D}}+L_{\alpha, a} \tag{11}
\end{equation*}
$$

where $L_{\alpha, a}$ is rank one with kernel

$$
\begin{equation*}
L_{\alpha, a}(x, y)=\left|V_{a}(x)\right|^{1 / 2} \frac{\mathrm{e}^{-\alpha|x|} \mathrm{e}^{-\alpha|y|}}{2 \alpha}\left(V_{a}(y)\right)^{1 / 2} \tag{12}
\end{equation*}
$$

As $a \downarrow 0$,

$$
\begin{equation*}
\boldsymbol{K}_{\alpha, a ; \mathrm{D}} \rightarrow \boldsymbol{K}_{\alpha, 0 ; \mathrm{D}} \tag{13}
\end{equation*}
$$

in norm, since if $W(x)$ denotes the RHS of (4) we have that

$$
\left|V_{a}(x)\right|^{1 / 2}|W(x)|^{-1 / 2} \rightarrow\left|V_{0}(x)\right|^{1 / 2}|W(x)|^{-1 / 2}
$$

strongly. So convergence in norm follows from the compactness of the kernel (10) with V_{a} replaced by W. Also $\left\|K_{\alpha, a ; \mathrm{D}}\right\| \rightarrow 0$ as $\alpha \rightarrow \infty$ uniformly in a. We also note that for any rank-one operator $A=\tilde{\psi}(\psi, \quad)$

$$
\begin{equation*}
(A-z)^{-1}=-\frac{1}{z}+\frac{\tilde{\psi}(\psi,)}{z((\psi, \tilde{\psi})-z)} . \tag{14}
\end{equation*}
$$

With these tools the proof of theorem 1 is now merely a somewhat tedious application of the resolvent expansion for $(H(a)-E)^{-1}$.

Proof of theorem 1. Write R (resp. R_{0}) for $\left(H(a)+\alpha^{2}\right)^{-1}$ (resp. $\left.\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+\alpha^{2}\right)^{-1}\right), K_{\mathrm{D}}$ for $K_{\alpha, a ; \mathrm{D}}, L$ for $L_{\alpha, a}$ and put $P=\phi(\phi, \cdot)$ where $\phi=\exp (-\alpha|x|) /(2 \alpha)^{1 / 2}$ and $R_{\mathrm{D}}=$ $R_{0}-P$. Pick α such that $\left\|K_{\mathrm{D}}\right\|<1$ and $\tau\left\|K_{\mathrm{D}}\right\|\left(1-\left\|K_{\mathrm{D}}\right\|\right)^{-1}<1$ for $a \in\left[0, a_{0}\right]$. Then

$$
\begin{equation*}
R=R_{\mathrm{D}}+P-\left(R_{\mathrm{D}}+P\right) V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}+L\right)^{-1}\left|V_{a}\right|^{1 / 2}\left(R_{\mathrm{D}}+P\right) \tag{15}
\end{equation*}
$$

Now, using (14)

$$
\begin{align*}
\left(1+K_{\mathrm{D}}+L\right)^{-1} & =\left[1+\left(1+K_{\mathrm{D}}\right)^{-1} L\right]^{-1}\left(1+K_{\mathrm{D}}\right)^{-1} \\
& =\left(1-\frac{1}{1+c}\left[\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right]\left(V_{a}^{1 / 2} \phi, \cdot\right)\right)\left(1+K_{\mathrm{D}}\right)^{-1} \tag{16}
\end{align*}
$$

where $c=\left(\phi, V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right)$. So
$R=R_{\mathrm{D}}+P-R_{\mathrm{D}} V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}}-P V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}}$
$-R_{\mathrm{D}} V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} P-P V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} P$
$+\frac{1}{1+c}\left[R_{\mathrm{D}} V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right]\left(V_{a}^{1 / 2} \phi, \cdot\right)\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}}$
$+\frac{1}{1+c}\left[R_{\mathrm{D}} V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right]\left(V_{a}^{1 / 2} \phi, \cdot\right)\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} P$
$+\frac{1}{1+c}\left[P V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right]\left(V_{a}^{1 / 2} \phi, \cdot\right)\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}}$
$+\frac{1}{1+c}\left[P V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} \phi\right]\left(V_{a}^{1 / 2} \phi, \cdot\right)\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} P$.
First we lump together the terms of the form $P \ldots P$. This gives

$$
\begin{equation*}
\left(1-c+\frac{c^{2}}{1+c}\right) P=\frac{1}{1+c} P . \tag{18}
\end{equation*}
$$

As $a \downarrow 0$, this term converges to zero in norm, since it follows from (5)-(8) and expanding $\left(1+K_{\mathrm{D}}\right)^{-1}$ that

$$
c \leqslant\left(\phi, V_{a} \phi\right)\left[1-\tau\left\|K_{\mathrm{D}}\right\|\left(1-\left\|K_{\mathrm{D}}\right\|\right)^{-1}\right]
$$

where $\left(\phi, V_{a} \phi\right) \rightarrow-\infty$ on account of (7).
Next we collect terms of the form $P \ldots R_{\mathrm{D}}$. They add up to

$$
\begin{equation*}
-\frac{\phi}{1+c}\left(\phi, V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}} \cdot\right) \tag{19}
\end{equation*}
$$

The norm of this operator is bounded by

$$
\begin{equation*}
\frac{\text { constant }}{|1+c|}\left\|V_{a}^{1 / 2} \phi\right\| \tag{20}
\end{equation*}
$$

since $\left\|\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}}\right\|$ is uniformly bounded in a. By (7) and (8), this term goes to zero also. The $R_{\mathrm{D}} \ldots P$ terms can be handled in the same way.

On writing $\left(1+K_{\mathrm{D}}\right)^{-1}=1-\left(1+K_{\mathrm{D}}\right)^{-1} K_{\mathrm{D}}$, a simple estimate shows that the $R_{\mathrm{D}} \ldots R_{\mathrm{D}}$ term which involves ϕ is bounded by

$$
\begin{equation*}
\frac{\text { constant }}{|1+c|}\left(\left\|R_{\mathrm{D}} V_{a} \phi\right\|^{2}+\left\|K_{\mathrm{D}}\left|V_{a}\right|^{1 / 2} \phi\right\|^{2}\right) \tag{21}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left\|R_{\mathrm{D}} V_{a} \phi\right\| \leqslant\left\|R_{\mathrm{D}}|x|^{-\beta}\right\|\left\|\left.x\right|^{\beta} V_{a} \phi\right\| \tag{22}
\end{equation*}
$$

where $\beta=\frac{3}{2}-\delta, 0<\delta<2-\gamma$. By assumption (4) the second factor on the RHS of (22) stays bounded as $a \downarrow 0$. Thus the first term in (21) tends to zero.

Similarly, choosing $\delta<2-\gamma$ and $\delta<1$, we have

$$
\begin{equation*}
\left\|K_{\mathrm{D}}\left|V_{a}\right|^{1 / 2} \phi\right\|^{2} \leqslant\left\|K_{\mathrm{D}}|x|^{-\delta / 2}\right\|^{2}\left\||x|^{8 / 2}\left|V_{a}\right|^{1 / 2} \phi\right\|^{2} \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
\left\||x|^{\delta / 2}\left|V_{a}\right|^{1 / 2} \phi\right\|^{2} & =\left(\left|V_{a}\right|^{1 / 2} \phi,|x|^{\delta}\left|V_{a}\right|^{1 / 2} \phi\right) \\
& \leqslant\left(\left|V_{a}\right|^{1 / 2} \phi,|x|\left|V_{a}\right|^{1 / 2} \phi\right)^{\delta}\left(\phi,\left|V_{a}\right| \phi\right)^{1-\delta} \tag{24}
\end{align*}
$$

by Jensen's inequality with respect to the operator $|x|^{\delta}$ and its spectral measure. As $a \downarrow 0$, the first factor in (24) stays bounded, while the second diverges less rapidly than ($\phi, V_{a} \phi$) on account of (7) and (8). So (21) tends to zero. Finally, using (13), we conclude that the remaining term

$$
\begin{equation*}
R_{\mathrm{D}}-R_{\mathrm{D}} V_{a}^{1 / 2}\left(1+K_{\mathrm{D}}\right)^{-1}\left|V_{a}\right|^{1 / 2} R_{\mathrm{D}} \tag{25}
\end{equation*}
$$

converges in norm to the inverse of $\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}\right)_{D}+V_{0}+\alpha^{2}$. This proves theorem 1 .

Remarks

(1) Assumptions (i)-(v) include some cases of physical interest, for example (1) or cut-offs of the form $V_{a}(x)=\min \left[-V_{0}(x), 1 / a\right], V_{0} \leqslant 0$. Moreover, the following situation is incorporated as well. Suppose $V_{0}(x)=0$ and $V_{a}(x)=-1 / a^{1+\delta}\left(V_{a}(x)=0\right)$ when $|x|<a / 2(|x|>a / 2), 0<\delta<1$.
(2) As in the Coulomb case (1), only the ground state of $H(a)$ tends to $-\infty$ as $a \downarrow 0$. That the ground state does, follows from (iv), noting that $(\varphi, H(a) \varphi) \rightarrow-\infty(a \downarrow 0)$ if $\varphi \in C_{0}^{\infty}(R), \varphi \equiv 1$ on $[-b, b]$. That the ground state is the only divergent eigenvalue can be seen as follows. Suppose $E_{0}(a), E_{1}(a)$ would both tend to $-\infty$ as $a \downarrow 0$. Choose a normalised linear combination ψ of the corresponding eigenfunctions which satisfies $\psi(0)=0$. Then $\psi \in D\left(H_{\mathrm{D}}(a)\right)$ and $\left(\psi, H_{\mathrm{D}}(a) \psi\right)=(\psi, H(a) \psi) \in\left[E_{0}(a), E_{1}(a)\right]$, contradicting the fact that $H_{\mathrm{D}}(a)$ is bounded from below uniformly in a (on account of (i)). Alternatively, one can also argue by means of the Birman-Schwinger principle, which says that $-\alpha^{2}$ is an eigenvalue of $H(a)$ if and only if $-K_{\alpha, a}$ has eigenvalue 1. If α is large $\left\|K_{\alpha, a ; \mathrm{D}}\right\|$ is small, so that $L_{\alpha, a}$ is responsible for the ground state diverging. In leading order, $I_{\alpha, a}$ has eigenvalue -1 if

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{V_{a}(x)}{2 \alpha} \mathrm{e}^{-2 \alpha|x|} \mathrm{d} x=-1, \tag{26}
\end{equation*}
$$

which gives an implicit equation for $\alpha(a)$. For problem (1) one easily verifies that $\alpha^{2} \approx-c^{2}(\ln a)^{2}$, which is in agreement with I.

Reference

