

Home Search Collections Journals About Contact us My IOPscience

Removing cut-offs from one-dimensional Schrodinger operators

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1980 J. Phys. A: Math. Gen. 13 L295 (http://iopscience.iop.org/0305-4470/13/9/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 05:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Removing cut-offs from one-dimensional Schrödinger operators

M Klaus†

Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Received 13 June 1980

Abstract. This Letter deals with the following type of question. Suppose $V_0(x)$ is so singular near 0 that the quadratic form of $-d^2/dx^2 + V_0(x)$ is unbounded from below, but that $(-d^2/dx^2)_D + V_0(x)$ is bounded below where D refers to Dirichlet boundary conditions (BCS) at 0. Let $H(a) = -d^2/dx^2 + V_a(x)$ where $V_a(x) \rightarrow V_0(x)$ pointwise (AE) as $a \downarrow 0$. Under some additional assumptions on V_a , we prove that $H(a) \rightarrow H_D(0)$ in the norm resolvent sense. Typical for applications is the case where V_a are cut-off potentials or regularised potentials of some sort.

This Letter was inspired by a recent work of Gesztesy (1980, to be referred to as I) where it was shown that on $L^2(\mathbb{R})$ the operator

$$H(a) = -d^2/dx^2 - c/(|x|+a), \qquad c > 0, \ a > 0, \tag{1}$$

tends to

$$H_{\rm D}(0) = (-{\rm d}^2/{\rm d}x^2)_{\rm D} - c/|x|$$
(2)

in the strong resolvent sense, as $a \downarrow 0$. The subscript D in (2) and throughout this Letter means that we have a Dirichlet BC at 0. Following I, the behaviour of the bound states in the limit of small a is as follows: the ground state $E_0(a)$ of (1) tends to $-\infty$ whereas the higher energies approach the eigenvalues of $H_D(0)$ monotonically from above. If $E_1(a) < E_2(a) < \ldots$ denote the excited states of H(a), then $E_1(a)$, which has odd parity and is also the ground state of $H_D(a)$, tends to $-c^2/4$. But also $E_2(a)$ has to converge to $-c^2/4$, for $H_D(0)$ has doubly degenerate eigenvalues and the non-crossing rule prevents $E_2(a)$ from ever getting smaller than $-c^2/4$. Thus removing the cut-off from (1) means putting Dirichlet BCs at 0.

It is the object of this Letter to prove that some of the essential features of the results in I carry over to a wide class of potentials and various types of cut-offs. We shall strengthen the results of I by proving *norm* resolvent convergence instead of strong resolvent convergence (theorem 1). We study the Hamiltonian

$$H(a) = -d^2/dx^2 + V_a(x)$$
(3)

in the limit $a \downarrow 0$ where a denotes a parameter taking on values in some interval $0 \le a \le a_0$.

† Present address: Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland.

0305-4470/80/090295+04 \$01.50 \odot 1980 The Institute of Physics L295

We require:

(i)
$$|V_a(x)| \le c(1+|x|^{\gamma-\epsilon})/|x|^{\gamma}, \qquad a \in [0, a_0],$$
 (4)

where $\epsilon > 0$, $0 < \gamma < 2$ and c is a constant;

(ii)
$$V_a(x) \in L_1^{\text{loc}}, \qquad a \in (0, a_0],$$
 (5)

(iii)
$$V_a(x) \rightarrow V_0(x)$$
 (6)

pointwise AE as $a \downarrow 0$;

(iv)
$$\int_{-b}^{b} V_a(x) \, \mathrm{d}x \to -\infty \qquad \text{as } a \downarrow 0, \text{ for some } b > 0; \tag{7}$$

(v)
$$\sup_{a \in (0,a_0)} \frac{\int_{-b}^{b} |V_a| \, dx}{\left| \int_{-b}^{b} V_a(x) \, dx \right|} = \tau < \infty.$$
(8)

Our main theorem states the following.

Theorem 1. Let H(a) be as in (3) and let $V_a(x)$ obey conditions (i)-(v). Then $H(a) \rightarrow H_D(0)$ in the norm resolvent sense.

Before proving theorem 1 we need some preparations. We define the Birman-Schwinger kernel for H(a) by

$$K_{\alpha,a}(x, y) = |V_a(x)|^{1/2} \frac{e^{-\alpha |x-y|}}{2\alpha} (V_a(y))^{1/2}$$
(9)

where $V_a^{1/2}$ stands for $|V_a|^{1/2} \operatorname{sgn} V_a$ and $(2\alpha)^{-1} \exp(-\alpha |x-y|)$ is the kernel of the inverse of $-d^2/dx^2 + \alpha^2$. The corresponding kernel for Dirichlet BCS is

$$K_{\alpha,a;D}(x, y) = |V_a(x)|^{1/2} \frac{e^{-\alpha|x-y|} - e^{-\alpha|x|} e^{-\alpha|y|}}{2\alpha} (V_a(y))^{1/2}.$$
 (10)

Then

$$K_{\alpha,a} = K_{\alpha,a;\mathbf{D}} + L_{\alpha,a} \tag{11}$$

where $L_{\alpha,a}$ is rank one with kernel

$$L_{\alpha,a}(x, y) = |V_a(x)|^{1/2} \frac{e^{-\alpha|x|} e^{-\alpha|y|}}{2\alpha} (V_a(y))^{1/2}.$$
 (12)

As $a \downarrow 0$,

$$K_{\alpha,\alpha;\mathbf{D}} \to K_{\alpha,0;\mathbf{D}} \tag{13}$$

in norm, since if W(x) denotes the RHS of (4) we have that

$$|V_a(x)|^{1/2} |W(x)|^{-1/2} \rightarrow |V_0(x)|^{1/2} |W(x)|^{-1/2}$$

strongly. So convergence in norm follows from the *compactness* of the kernel (10) with V_a replaced by W. Also $||K_{\alpha,a;\mathbf{D}}|| \to 0$ as $\alpha \to \infty$ uniformly in a. We also note that for any rank-one operator $A = \tilde{\psi}(\psi, 0)$

$$(A-z)^{-1} = -\frac{1}{z} + \frac{\tilde{\psi}(\psi,)}{z((\psi, \tilde{\psi}) - z)}.$$
(14)

With these tools the proof of theorem 1 is now merely a somewhat tedious application of the resolvent expansion for $(H(a)-E)^{-1}$.

Proof of theorem 1. Write R (resp. R_0) for $(H(a) + \alpha^2)^{-1}$ (resp. $(-d^2/dx^2 + \alpha^2)^{-1}$), K_D for $K_{\alpha,a;D}$, L for $L_{\alpha,a}$ and put $P = \phi(\phi, \cdot)$ where $\phi = \exp(-\alpha|x|)/(2\alpha)^{1/2}$ and $R_D = R_0 - P$. Pick α such that $||K_D|| < 1$ and $\tau ||K_D|| (1 - ||K_D||)^{-1} < 1$ for $a \in [0, a_0]$. Then

$$R = R_{\rm D} + P - (R_{\rm D} + P) V_a^{1/2} (1 + K_{\rm D} + L)^{-1} |V_a|^{1/2} (R_{\rm D} + P).$$
(15)

Now, using (14)

$$(1 + K_{\rm D} + L)^{-1} = [1 + (1 + K_{\rm D})^{-1}L]^{-1}(1 + K_{\rm D})^{-1}$$
$$= \left(1 - \frac{1}{1 + c}[(1 + K_{\rm D})^{-1}|V_a|^{1/2}\phi](V_a^{1/2}\phi, \cdot)\right)(1 + K_{\rm D})^{-1}$$
(16)

where
$$c = (\phi, V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi)$$
. So

$$R = R_D + P - R_D V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} R_D - P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$- R_D V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} P - P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} P$$

$$+ \frac{1}{1+c} [R_D V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$+ \frac{1}{1+c} [R_D V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$+ \frac{1}{1+c} [P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$+ \frac{1}{1+c} [P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$+ \frac{1}{1+c} [P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} R_D$$

$$+ \frac{1}{1+c} [P V_a^{1/2} (1+K_D)^{-1} |V_a|^{1/2} \phi] (V_a^{1/2} \phi, \cdot) (1+K_D)^{-1} |V_a|^{1/2} P. \quad (17)$$

First we lump together the terms of the form $P \dots P$. This gives

$$\left(1 - c + \frac{c^2}{1 + c}\right)P = \frac{1}{1 + c}P.$$
(18)

As $a \downarrow 0$, this term converges to zero in norm, since it follows from (5)–(8) and expanding $(1 + K_D)^{-1}$ that

$$c \leq (\phi, V_a \phi) [1 - \tau ||K_D|| (1 - ||K_D||)^{-1}]$$

where $(\phi, V_a \phi) \rightarrow -\infty$ on account of (7).

Next we collect terms of the form $P \dots R_D$. They add up to

$$-\frac{\phi}{1+c}(\phi, V_a^{1/2}(1+K_{\rm D})^{-1}|V_a|^{1/2}R_{\rm D}\cdot).$$
(19)

The norm of this operator is bounded by

$$\frac{\text{constant}}{|1+c|} \| V_a^{1/2} \phi \| \tag{20}$$

since $||V_a|^{1/2} R_D||$ is uniformly bounded in *a*. By (7) and (8), this term goes to zero also. The $R_D \dots P$ terms can be handled in the same way.

On writing $(1+K_D)^{-1} = 1 - (1+K_D)^{-1}K_D$, a simple estimate shows that the $R_D \dots R_D$ term which involves ϕ is bounded by

$$\frac{\text{constant}}{|1+c|} (\|R_{\rm D} V_a \phi\|^2 + \|K_{\rm D} |V_a|^{1/2} \phi\|^2).$$
(21)

Now

$$\|\boldsymbol{R}_{\mathrm{D}}\boldsymbol{V}_{a}\boldsymbol{\phi}\| \leq \|\boldsymbol{R}_{\mathrm{D}}|\boldsymbol{x}|^{-\beta}\|\|\boldsymbol{x}\|^{\beta}\boldsymbol{V}_{a}\boldsymbol{\phi}\|$$

$$\tag{22}$$

where $\beta = \frac{3}{2} - \delta$, $0 < \delta < 2 - \gamma$. By assumption (4) the second factor on the RHs of (22) stays bounded as $a \downarrow 0$. Thus the first term in (21) tends to zero.

Similarly, choosing $\delta < 2 - \gamma$ and $\delta < 1$, we have

$$\|K_{\rm D}|V_a|^{1/2}\phi\|^2 \le \|K_{\rm D}|x|^{-\delta/2}\|^2 \||x|^{\delta/2}|V_a|^{1/2}\phi\|^2 \tag{23}$$

and

$$||x|^{\delta/2} |V_a|^{1/2} \phi||^2 = (|V_a|^{1/2} \phi, |x|^{\delta} |V_a|^{1/2} \phi)$$

$$\leq (|V_a|^{1/2} \phi, |x| |V_a|^{1/2} \phi)^{\delta} (\phi, |V_a| \phi)^{1-\delta}$$
(24)

by Jensen's inequality with respect to the operator $|x|^{\delta}$ and its spectral measure. As $a \downarrow 0$, the first factor in (24) stays bounded, while the second diverges less rapidly than $(\phi, V_a \phi)$ on account of (7) and (8). So (21) tends to zero. Finally, using (13), we conclude that the remaining term

$$R_{\rm D} - R_{\rm D} V_a^{1/2} \left(1 + K_{\rm D}\right)^{-1} |V_a|^{1/2} R_{\rm D}$$
⁽²⁵⁾

converges in norm to the inverse of $(-d^2/dx^2)_D + V_0 + \alpha^2$. This proves theorem 1.

Remarks

(1) Assumptions (i)–(v) include some cases of physical interest, for example (1) or cut-offs of the form $V_a(x) = \min[-V_0(x), 1/a]$, $V_0 \le 0$. Moreover, the following situation is incorporated as well. Suppose $V_0(x) = 0$ and $V_a(x) = -1/a^{1+\delta}(V_a(x) = 0)$ when |x| < a/2 (|x| > a/2), $0 < \delta < 1$.

(2) As in the Coulomb case (1), only the ground state of H(a) tends to $-\infty$ as $a \downarrow 0$. That the ground state does, follows from (iv), noting that $(\varphi, H(a)\varphi) \rightarrow -\infty$ $(a \downarrow 0)$ if $\varphi \in C_0^{\infty}(R), \varphi \equiv 1$ on [-b, b]. That the ground state is the only divergent eigenvalue can be seen as follows. Suppose $E_0(a), E_1(a)$ would both tend to $-\infty$ as $a \downarrow 0$. Choose a normalised linear combination ψ of the corresponding eigenfunctions which satisfies $\psi(0) = 0$. Then $\psi \in D(H_D(a))$ and $(\psi, H_D(a)\psi) = (\psi, H(a)\psi) \in [E_0(a), E_1(a)]$, contradicting the fact that $H_D(a)$ is bounded from below uniformly in a (on account of (i)). Alternatively, one can also argue by means of the Birman–Schwinger principle, which says that $-\alpha^2$ is an eigenvalue of H(a) if and only if $-K_{\alpha,a}$ has eigenvalue 1. If α is large $||K_{\alpha,a,D}||$ is small, so that $L_{\alpha,a}$ is responsible for the ground state diverging. In leading order, $I_{\alpha,a}$ has eigenvalue -1 if

$$\int_{-\infty}^{\infty} \frac{V_a(x)}{2\alpha} e^{-2\alpha|x|} dx = -1,$$
(26)

which gives an implicit equation for $\alpha(a)$. For problem (1) one easily verifies that $\alpha^2 \approx -c^2 (\ln a)^2$, which is in agreement with I.

Reference

Gesztesy F 1980 J. Phys. A: Math. Gen. 13 867